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Summary 
Nonlinear, finite-element computer  programs  are  too 

costly to use in  the early design stages for hot-section 
components of aircraft  gas  turbine engines. To improve 
the durability  of these components,  it is necessary to 
develop simpler and  more economical  methods for 
representing the  structural response  of  materials  under 
cyclic loading.  This  study was conducted to develop a 
computer  program for  performing a simplified nonlinear 
structural analysis using only an elastic solution as  input 
data. 

The simplified method was based on  the assumption 
that  the inelastic regions in  the  structure  are constrained 
against stress redistribution by the  surrounding elastic 
material.  Therefore the  total  strain history  can  be  defined 
by an elastic analysis. A  computer  program (ANSYMP) 
was created to predict the stress-strain  history at  the 
criteical fatigue  location of a thermomechanically cycled 
structure  from elastic input  data.  Appropriate material 
stress-strain properties and a plasticity hardening model 
were incorporated  into  the  program. Effective stresses 
and plastic strains  are  approximated by an iterative and 
incremental  solution  procedure.  Initial development of 
the simplified inelastic analysis  method considered only 
plasticity effects. The  method will be  further developed 
to  account for creep and relaxation effects. 

A series of three cases were analytically  examined to 
verify the accuracy of the simplified method. Verification 
was made  through  comparison with a  three-dimensional, 
nonlinear, finite-element analysis (MARC). These cases 
were (1) a uniaxial specimen subjected to strain cycling 
under  isothermal  conditions; (2) a  benchmark  notch 
specimen subjected to load cycling; and (3) a  prismatic 
wedge specimen subjected to thermal cycling. Monotonic 
stress-strain properties for  IN 100 alloy and a  combined 
isotropic-kinematic  hardening model were assumed  for 
the uniaxial and wedge specimen problems. Cyclic stress- 
strain  properties for Inconel 718 alloy and a  kinematic 
hardening model were used for  the benchmark  notch 
specimen problem. 

Elastic and elastic-plastic finite element analyses were 
performed for all three cases by using the  MARC 
computer  program. The elastic solutions for  the critical 
locations were used as  input  data  for  the simplified 
analysis computer  program.  Comparisons were made of 
the stress-strain histories at  the critical  locations  as 
calculated from  the simplified and elastic-plastic finite 
element analyses. 

The comparisons  demonstrated  that  the simplified 
method  can  duplicate  the cyclic stress-strain hysteresis 
loops  from the  MARC nonlinear  analysis to a high degree 
of accuracy. Mean stresses calculated from  the simplified 
method were in generally good  agreement with the 
MARC results. In a typical problem,  ANSYMP used less 

than 1 percent of the central processor unit (CPU)  time 
required by MARC to compute  the inelastic solution. 

Introduction 
The drive toward  better  performance and fuel 

economy for  aircraft gas  turbine engines has resulted in 
higher turbine inlet temperatures, pressure ratios,  and 
rotor speeds. These  more severe operating  conditions 
have subjected the hot-section components to thermo- 
mechanical load cycles that induce significant inelastic 
strains  and eventual  fatigue  cracking. It  has become 
increasingly difficult to design reliable components to 
meet both  the engine life and performance  requirements. 
Improvements  in the durability  of these components 
depend on accurate  structural analysis and life predic- 
tion.  Life  prediction  methods have been under develop- 
ment by the NASA Lewis Research Center and  other 
organizations (refs. 1 to 4). Application of these  methods 
requires knowledge of the temperature-stress-strain 
history at  the critical crack  initiation  location of the 
structure. 

The  primary  structural  parameters of interest for life 
prediction are  the  total strain  range and  the mean cyclic 
stress. For most practical cases, the critical location and 
the  total  strain  range  can be satisfactorily  obtained from 
an elastic analysis as  demonstrated  in references 3 to 9. 
However,  in cases involving purely mechanical load 
cycling or  large  plastic  strains, an elastic analysis may not 
be adequate to determine  the  total  strain  range.  Mean 
stresses for  hot-section  components,  as well as multiaxial 
and thermomechanical  fatigue specimens, must be calcu- 
lated  from  some  type of nonlinear analysis. The accuracy 
of  the solutions is largely dependent on the  adequacy  of 
the  stress-strain  properties and  the plasticity model used 
in the analysis. 

Nonlinear finite-element analysis is being increasingly 
used for calculating inelastic structural response. How- 
ever,  nonlinear  methods are not feasible for use as a 
component design tool because of the high computing 
costs associated with the iterative and incremental nature 
of  the plasticity solutions.  Computing  costs are  further 
increased by the presence of high thermal  gradients and 
geometrical  irregularities,  such  as cooling holes, which 
necessitate three-dimensional analyses. Three-dimension- 
al, nonlinear finite-element analyses are prohibitively 
time  consuming and expensive to  conduct in the early 
design stages for  combustor  and  turbine structures. 

To improve  the design of hot-section components,  it is 
necessary to develop simpler and  more economical 
methods for representing  structural  behavior  under cyclic 
loading. Development of life prediction methods would 
also benefit from a simplified analysis method for 



determining  the  structural  behavior  of  multiaxial  and 
thermomechanical  fatigue specimens. 

Under  contract to NASA Lewis, Pratt & Whitney 
Aircraft developed a simplified approach  for  approx- 
imating the stress-strain  history from a linear elastic 
analysis  (ref. 10). This  method uses a  conventional yield 
surface  concept  without  a  specific  plasticity  hardening 
model.  Shifts  in the stress  origin due  to  load reversal are 
accounted  for by assuming  back stresses at various  points 
in  the  loading cycle. A combined elastic-creep response 
was  used to predict  overall  material  behavior  under 
cycling. Simulations of a series of Hastelloy X uniaxial 
experiments showed that  the P&WA simplified approach 
gave  results of similar  accuracy to nonlinear  finite 
element  solutions. Since the  primary  aim  of  this  contract 
was to develop an approach  rather  than  a  computer  pro- 
gram,  no  attempt was made to  automate this  method. 

This  study was conducted to develop  a fully automated 
simplified  analytical  procedure for estimating the stress- 
strain  history of a  thermomechanically cycled structure. 
In  a  different  approach  from  that of reference 10, a 
simulated plasticity model was  used to track  the cyclic 
yielding. The initial development of the  simplified 
procedure was limited to consideration  of plasticity 
effects.  Further  development will consider  creep and 
stress relaxation  effects. 

A computer  program (ANSYMP) was created to 
predict the stress-strain  history at  the critical  location of a 
thermomechanically cycled structure  from  the  elastic 
solution. An incremental and iterative  procedure  esti- 
mates the plastic  strains from  the material  stress-strain 
properties and  the simulated plasticity hardening  model. 
Analytical  predictions from  the simplified method were 
compared with nonlinear finite-element solutions  from 
the  MARC  computer  program (ref. 11) for  a  number of 
cases. These cases involved uniaxial and multiaxial  stress 
states,  isothermal and  nonisothermal  conditions,  and 
various  materials and plasticity hardening  models.  These 
cases included an Inconel 7 18 benchmark  notch specimen 
that was load cycled  in an experiment to verify structural 
analysis methodologies  (ref. 12). Nonlinear  analyses 
using the  MARC  program were performed  for  the  bench- 
mark problem in the  study  reported in reference 5 .  A 
kinematic  hardening  model was found  to give excellent 
agreement with the experimental  results for this  problem. 
Another  case  for which the simplified method was 
evaluated was a  double-edge wedge  specimen that  had 
been thermally cycled in fluidized beds  (ref. 13). MARC 
nonlinear analysis results for  this  problem  are  reported  in 
reference 6. A combined  isotropic-kinematic  hardening 
model was  used for  the  MARC  analyses  because  only 
monotonic stress-strain properties were available for  the 
wedge  specimen material. 

The simplified analysis method was able to duplicate 
the cyclic stress-strain hysteresis loops  from  the  nonlinear 

analysis to a high degree of accuracy for most  of  the cases 
that were evaluated.  Mean stresses calculated from  the 
simplified  method for  the  benchmark  notch  and wedge 
problems were in  good agreement  with  results from  the 
nonlinear  analyses. For a typical  problem,  the simplified 
analysis program  required less than 1 percent of  the 
central  processor  unit (CPU)  time  required by a nonlinear 
finite-element program.  ANSYMP is available from  the 
Computer  Software  Management  Information  Center 
(COSMIC),  University of  Georgia,  Athens,  Ga. 30620. 

Analytical  Procedure 
A simplified inelastic  procedure was  developed for 

calculating the stress-strain  history at  the critical  fatigue 
location  of  a structure subjected to cyclic thermal or 
mechanical  loading. The  fundamental  assumption in this 
procedure is that  the plastic  region is local and is 
constrained from  redistribution  by  the  surrounding 
elastic material.  It  follows  from  this  assumption  that  the 
total  strain  history at  the critical  location  can be defined 
by an elastic  solution.  Justification  for  the  assumption of 
elastic constraint  of  local  inelasticity  can be found  in 
references 3 to 9, where structural  analyses  of  combustor 
liners,  air-cooled turbine blades, and wedge fatigue 
specimens have  shown  that  the  total  strain  ranges  from 
elastic and nonlinear  solutions are in close agreement. A 
corollary to this  assumption is that  the elastic  loading and 
unloading  segments  of  the  effective  stress-equivalent 
total  strain hysteresis loops  constructed  from an elastic- 
plastic  analysis will be  parallel to  the elastic hysteresis 
loops.  This is demonstrated by comparing  the  nonlinear 
and elastic hysteresis loops in references 5 and 6.  

The basic problem in developing the simplified  analyt- 
ical procedure was to characterize the yield surface in 
terms  of  the  total  strain  obtained  from an elastic analysis 
or strain  measurements. Classical plasticity  theory  char- 
acterizes the yield surface by a yield condition to describe 
yielding under  multiaxial  stress  states and by a  hardening 
model to establish the  location of the yield surface  during 
cycling. The simplified  procedure was set up  to 
accommodate itself to  any yield criterion or hardening 
model. The  only  requirements  are  that  the  elastic  input 
data be consistent with the yield criterion and  that  the 
appropriate material  properties be  used  in conjunction 
with the  hardening  model.  Currently  the simplified 
analysis is limited to consideration of time-independent 
plasticity. Future development will extend the method to 
creep- and time-dependent  plasticity  effects. 

Most  nonlinear  computer  programs use the von  Mises 
yield criterion and  deformation  theory. Implicit in the 
von  Mises  yield criterion is the conversion of  the  total 
strain  from  a  uniaxial  stress-strain  curve to modified 
equivalent total  strain  for multiaxial  problems, as 
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discussed in  reference 14. The  modified  elastic  equivalent 
total  strain  corresponds to  the uniaxial  total  elastic  strain 
multiplied by 2(1 + v) /3 ,  where Y is  Poisson’s  ratio.  This 
relationship  must  be taken  into  account in  applying  strain 
results from elastic  finite-element  programs or strain 
measurements  as  input  for  the simplified inelastic 
analysis. Both  elastic and  nonlinear finite-element 
analyses for this  study were conducted with the  MARC 
computer  program.  The  elastic  solutions  computed  from 
MARC  for input into  the simplified  analysis  method were 
automatically  obtained in terms  of von  Mises effective 
stresses and  modified  equivalent  total  strains. 

The elastic  input data  are  subdivided  into a sufficient 
number  of  increments to define the stress-strain cycle. 
These increments  are  analyzed sequentially to  obtain  the 
cumulative  plastic  strains  and to  track  the yield surface. 
An iterative  procedure is used to calculate the yield 
stresses for  increments  undergoing  plastic  straining. 
First, an  estimated  plastic  strain is assumed for calcu- 
lating an initial yield stress from  the  stressstrain 
properties  and the  simulated  hardening  model.  Second,  a 
new plastic  strain is calculated as  the difference between 
the  total  strain and the  elastic  strain  component.  Then the 
yield stress is recalculated by using the new plastic  strain 
value. This  iterative  procedure is repeated  until  the new 
and  previous  plastic  strains  agree within a tolerance  of 
1 percent. 

A  Fortran IV computer  program  (ANSYMP) was 
created to automatically  implement  the simplified ana- 
lytical procedure.  The  program  consists  of  the  main 
executive routine  (ANSYMP)  and  two  subroutines 
(ELAS and  YIELD).  The  incremental  elastic  data  and 
temperatures  are  read  into  subroutine  ELAS.  Material 
stress-strain  properties  as a function  of  temperature  and a 
simulated  hardening  model  are  incorporated in 
subroutine  YIELD. 

The  computer  code is available  from  COSMIC, 
University of  Georgia,  Athens,  Ga. 30602. Sample  input 
and  output  data  are  shown in  appendixes  A  and B, 
respectively. Figure 1 is a flow  chart  of the program.. 

The calculational  scheme  initially  follows the effective 
stress-equivalent strain  input  data  from  subroutine 
ELAS  until the  occurrence  of  initial yielding. The  stress- 
strain  solution  then  proceeds  along the yield surface as 
determined  from  the  stress-strain  properties  in  subroutine 
YIELD.  At  each  increment  during yielding, the stress 
shift  (difference between new  yield stress and stress 
predicted  from  elastic  analysis) from  the original input 
data is  calculated.  Elastic load reversal is signaled when 
the input  stress is less than  the yield stress from  the 
previous  increment.  During  elastic  unloading,  the stresses 
are translated  from the original  elastic  analysis  solution 
by the  amount  of  the calculated  stress  shift. Reverse 
yielding occurs when the stress  reaches the reverse yield 
surface as determined  from  the  hardening  model  incorpo- 

rated  in  subroutine YIELD. Again,  the  solution follows 
the yield surface  until another  load reversal is indicated 
when the stress based on  the shifted  elastic  solution  is less 
than the yield stress. The elastic  response  during  load 
reversal is obtained by translating the original  elastic 
solution  according to the new stress  shift  calculated 
during reverse yielding. The  stress-strain  response for 
subsequent cycles is computed by repeating  this  proce- 
dure  of identifying load reversals,  tracking reverse yield 
surfaces, and translating  the  original  elastic  solution 
during  elastic  loading and  unloading. 

The  computer  program was verified by conducting 
simplified analyses for  a series of three  problems  and 
comparing  the  results with those  from  MARC  nonlinear 
analyses. The first  of these problems was a uniaxial 
specimen subjected to strain cycling under  isothermal 
conditions.  Variations  of  this  problem were run with 
reverse loading  and  strain  ratcheting.  A  combined 
isotropic-kinematic  hardening  model was  used with 
monotonic  stress-strain  properties for IN 100 alloy 
obtained  from  reference 5 .  Nonlinear  and elastic MARC 
analyses of  this  problem were performed by using a single 
20-node,  three-dimensional  element.  The  MARC 
solutions for  the uniaxial  problem were computed  for  the 
centroid of the single solid-element model.  The second 
problem  considered was a mechanically load-cycled 
benchmark  notch specimen shown  in  figure 2. This 
specimen  was tested  under  isothermal  conditions  as part 
of  a  program to provide  controlled  strain data  for 
constitutive  model  verification  (ref. 12). A  MARC 
analysis of this  problem using kinematic  hardening 
demonstrated excellent agreement with the  experimental 
data in reference 5 .  The simplified analysis of  the 
benchmark  notch  problem used the  kinematic  model  and 
the cyclic stress-strain data  for Inconel 718 alloy given  in 
reference 12. The  third  problem was an IN 100 double- 
edge wedge specimen that was thermally cycled in the 
fluidized-bed  facility discussed in reference 13. This 
problem  provides a nonisothermal case for evaluating the 
computer  program.  The  simplified  analysis used the 
combined  isotropic-kinematic  hardening  model and  the 
same  IN 100 monotonic  stress-strain  properties as 
reported  in  reference 6 for direct  comparison with the 
MARC  nonlinear  analysis  results.  The  geometry  of  the 
doubleedge wedge specimen is illustrated  in  figure 3. 
MARC elastic and elastic-plastic  solutions for  the 
benchmark  notch  and wedge specimens were computed at 
the closest Gaussian  integration  point to  the critical  crack 
initiation  location. 

The material  properties and  simulated  hardening 
models were incorporated  in  subroutine  YIELD. Values 
for  the pointer KKK of 1, 2, or 3 indicate the uniaxial, 
benchmark  notch,  or wedge cases, respectively. The 
sample  input  in  appendix  A  and  output in appendix B are 
for  the uniaxial,  strain-controlled  problem. The elastic 
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F igure 2. - Benchmark  notch  specimen.  (Dimensions  are in mi l l imeters . )  
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Figure 3. - Double-edge wedge. (Dimensions  are  in  centimeters. 

input data were repeated  a second time,  as  shown in 
appendix A,  to conduct  the simplified analyses for  two 
cycles for all of the problems  considered in this  study. 

Discussion of Analytical  Results 
The  results of the simplified elastic-plastic analyses of 

the uniaxial,  benchmark  notch, and wedge specimen 
cases are discussed herein.  Comparisons  are  made with 
MARC elastic-plastic solutions.  Stress-strain cycles used 
for comparison are in terms of effective stresses and 
equivalent  total  strains based on  the von Mises yield 
criterion.  The discussion is based on  the critical location 
in  the specimen where cracks would start. 

Uniaxial Problem 

The uniaxial problem was used for  the basic 
development of the simplified approach  and computer 
program. Since the loading was strain  controlled, the 
maximum and minimum total  strains were identical for 
the elastic and elastic-plastic finiteelement solutions. 
Although a combined  isotropic-kinematic  model was 
used, the peak  plastic  strains were large  enough that  the 

stress-strain cycle was reduced to stabilized kinematic 
hardening. 

Three  variations of  the uniaxial problem were 
considered:  initial tensile loading, initial compressive 
loading, and imposed  strain  ratcheting.  A  constant 
temperature of 982" C was assumed during the cycles. 
Figure 4 shows  a  comparison of the stress-strain cycles 
obtained  from  the simplified and  MARC elastic-plastic 
analyses. Agreement between the simplified and  MARC 
elastic-plastic results was generally excellent for all of  the 
uniaxial cases. The  minor discrepancies during  initial 
loading are  due  to  two factors:  the simplified procedure 
had a more  gradual  approach to initial yielding, and  the 
MARC results became  temporarily  perturbed in the  sharp 
transition between the elastic and work-hardening slopes. 

Benchmark Notch Problem 

The  rationale  for  the simplified approach is that strain 
redistribution is prevented because the local plastic region 
is contained by the  surrounding elastic material.  This 
assumption is most likely to be violated in a mechanically 
loaded  structure, especially where the peak strain  occurs 
at a  discontinuity. The benchmark  notch test had  the 
major  features that  promote strain  redistribution: testing 
was conducted by mechanical load cycling, the tempera- 
ture was kept constant  at 649" C,  and  the critical location 
was at  the  notch  root of the specimen. 

The consequences of  the  failure of the assumption of 
contained plasticity are  apparent in the analytical results 
for  the benchmark  notch  problem.  As  shown in figure 5 ,  
the  total  strain  range  from  the  MARC elastic-plastic 
analysis was about 20 percent greater than  that  obtained 
from  the elastic analysis. This foreshortening  of  the 
elastic strain  range caused the simplified procedure to 
truncate  the stress-strain hysteresis loop,  as shown in 
figure 5(a). When the elastic solution was extended to be 
consistent with the measured  notch  root  strain, the 
agreement between the simplified and  MARC elastic- 
plastic  stress-strain hysteresis loops was excellent, as 
demonstrated in figure 5@).  Further  study is required to 
develop rules or guidelines for adjusting the elastic 
solution  in  this  type of problem. Both the simplified and 
MARC elastic-plastic analyses gave stable stress-strain 
hysteresis loops  for  the second cycle. 

In  terms  of cycle mean stresses, the simplified pro- 
cedure gave results  more  consistent with MARC elastic- 
plastic  analyses than were possible from  an elastic solu- 
tion. Even with the  unadjusted elastic solution used in 
figure 5(a), the mean stresses from  the simplified and 
elastic solutions were 36 and 223 MPa, respectively, as 
compared with 77 MPa  for  the elastic-plastic solution. 
When the extended elastic solution  shown  in  figure 5(b )  
was used, the simplified procedure  had an even closer 
mean  stress  prediction  of 68 MPa.  The ANSYMP  analy- 
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m- 

-1000 - 0 Simplified  procedure - MARC analysis 

-m - 

~ o t a l  microstrain - 
(a)  Initial  tensile loading. 

(b) Initial compressive loading. 
(c) Strain ratcheted. 

Figure 4 - Uniaxial problem. 

sis of the  benchmark  notch problem used less than strain cycle was 55 MPa.  The simplified procedure  pre- 
1 percent  of  the CPU  time required by the  MARC  non- dicted  a  mean  stress  of 20 MPa  as contrasted with -201 
linear  analysis. MPa  for  the elastic  solution. 

It  can  be seen that  the peak  strains  from  the  MARC 

Wedge Specimen Problem 

The  double-edge wedge specimen provided  a  noniso- 
thermal  case  for  evaluating  the simplified procedure  and 
the  operation of  the  ANSYMP  program. Because of  the 
incremental  temperature  changes, the elastic solution was 
no longer  linear as  for  the  isothermal uniaxial and bench- 
mark  notch cases. 

In  figure 6,  the stress-strain hysteresis loops  calculated 
from  the simplified procedure  and  the  MARC elastic- 
plastic  analyses are  compared  for two  thermal cycles. 
Reasonably  good  agreement is seen between the 
ANSYMP  and  MARC stress-strain hysteresis loops in 
figure 6(a). The mean stress for  the second MARC stress- 

elastic analyses  shown in figure  6(a) are somewhat 
displaced in the tensile  direction  from  the  MARC elastic- 
plastic  results. The reason for this  displacement  of the 
two  MARC  solutions is that  there is a  small  initial tensile 
thermal  stress at  the first  increment.  This is equivalent to 
an initial  residual  stress that  one would expect to be 
shaken  out  on  subsequent cycling. The elastic  solution 
was therefore  displaced as  shown in figure 6(b) so that  the 
solution was at zero  stress and  strain  at  the  start of the 
first cycle. The results from rerunning the simplified 
procedure using the displaced elastic solution  are shown 
in figure 6(b). There is some improvement in the 
correlation between the hysteresis loops  obtained  from 
the  MARC elastic-plastic and  the simplified  analyses. 
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la) Elastic solution  from  finite-element analysis. 
Ib) Elastic solution based on  strain measurement. 

Figure 5. - Benchmark  notch problem. 

Summary of Results 
A simplified analysis procedure was developed for 

calculating the stress-strain  history at  the critical  location 
of a thermomechanically cycled structure. A Fortran IV 
computer  program  (ANSYMP) was created to implement 
this  procedure. The general  conclusions and  observations 
that were drawn  from  the  evaluation of the  method  are  as 
follows: 

1. The predicted  stress-strain  response showed good 
to excellent agreement with nonlinear finite-element 
analysis  results  obtained by using the  MARC  program. 

2. Mean cyclic stress predictions were in  considerably 
better  agreement with MARC  nonlinear analysis  results 
than mean stresses obtained  from elastic  solutions. 

3. Nonlinear stress-strain histories were computed 

-8001 
Total microstrain - 

(a1 Elastic solution  from  finite-element analysis. 
(bl Elastic solution displaced to  zero  ini t ial  stress. 

Figure 6. - Wedge specimen problem. 

from  the  ANSYMP  program with less than 1 percent of 
the central  processor  unit  (CPU)  time  required  by the 
MARC  program. 

4. The  main limitation  of the simplified  method is that 
strain  redistribution adversely affects  the  solution 
accuracy.  Strain  redistribution is most likely to occur 
with mechanical  load cycling and  near  geometrical 
discontinuities.  Further study is needed to develop 
guidelines for  adjusting  the elastic input data  to improve 
the simplified  solution for this  type  of  problem. 

National  Aeronautics and Space  Administration 
Lewis Research Center 
Cleveland, Ohio, April 11, 1982 



Appendix  A 
Sample  Program Input 

INC 

1 
2 
3 

5 
4 

6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

37 
36 

38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

'ZEW 
F 

1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 

1800. 
1800. 

1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 

1800. 
1800. 

1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 

1800. 
1800. 

1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 

1800. 
1800. 

1800. 
1800. 

STRESS 
PSI 
0. 

50500. 
60600. 
70700. 
80800. 
90900. 
101000. 
111100. 
121200. 
131299. 
141399. 
151499. 
161599. 
171699. 
181799. 
191899. 
201999. 
212099. 
222199. 
232299. 
242399. 
252499. 
262599. 
272699. 
171699. 
161599. 
151499. 
141399. 
131299. 
121199. 
111099. 
100999. 
90899. 
80799. 
70699. 
60599. 
50499. 
40399. 
30299. 
20199. 
10099. 

-1. 
-10101. 
-20201. 
-30301. 
-40401. 
-50501. 

TOTAL STRAIN 

0.000 
2.500E-03 

3.5OOE-03 
3.000E-03 

4.000E-03 
4.5OOE-03 
5.000E-03 
5.5001-03 
6.000E-03 
6.5006-03 
7.0003-03 
7.500E-03 

8.5003-03 
8.000E-03 

9.000E-03 
9.500E-03 
1.000E-02 
1.05OE-02 
1.100E-02 
1.150E-02 
1.200E-02 
3.2503-02 
1.300E-02 
1.35OE-02 
8.500E-03 
8.000E-03 
7.500E-03 
7.OOOE-03 
6.5006-03 
6.000E-03 
5.5001-03 
5.OOOE-03 
4.500E-03 
4.000E-03 
3.500E-03 
3.000E-03 
2.500E-03 
2.000E-03 

9.999E-04 
1.5008-03 

4.9998-04 
-6.519E-08 
-5.0013-04 
-1.000E-03 
-1.500E-03 
-2.000E-03 
-2.500E-03 

48 

50 
49 

52 
51 

53 
54 
w 
56 
57 
58 
59 
60 
61 
62 
63 
64 

66 
65 

67 
68 
69 
70 
71 
72 
73 
74 
?5 
76 
n 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 

92 
91 

93 
94 
95 
96 
97 
98 
99 
100 
101 
102 

1800. -60601. 
1800. -70701. 
1800. -80801. 
1800. -90901. 

1800.  -111101. 

1800.  -131301. 

1800.  -151501. 
1800.  -161601. 

1800. -181801. 
1800. -191900. 
1800. -202000. 
1800. -212100. 
1800. -222200. 

1800. -242400. 
1800. -232300. 

1800. -252500. 
1800. -262600. 
1800. -272700. 
1800. -222200. 
1800. -212100. 
1800. -202000. 
1800. -191900. 
1800. -181800. 
1800. -171700. 
1800. -161600. 
1800. -151500. 
1800. -141400. 
1800. -131300. 
1800. -121200. 
1800. -111100. 
1800. -101000. 
1800. -90900. 
1800. -80800. 
1800. -70700. 
1800. -60600. 
1800. -50500. 
1800. -40400. 

1800. -20200. 
1800. -30300. 

1800.  -10100. 
1800. 
1800. 50500. 

0. 

1800. 60600. 
1800. 70700. 
1800. 80800. 
1800. 90900. 
1800. 101000. 
1800. 111100. 
1800. 121200. 
1800. 131299. 
1800. 141399. 

1800.  -101001. 

1800.  -121201. 

1800.  -141401. 

1800.  -171701- 

-3.000E-03 

-4.000E-03 
-3.5OOE-03 

-4.500E-03 
-5.OOOE-03 
-5.500E-03 
-6.000E-03 
-6.500E-03 
-7.000E-03 
-7.5003-03 
-8.000E-03 
-8.500E-03 
-9.000E-03 
-9.5006-03 
-1.000E-02 
-1.050E-02 
-1.100E-02 
-1.150E-02 
-1.200E-02 
-1.2503-02 
-1.300E-02 

-1.100E-02 
-1.3503-02 

-1.O5OE-02 
-1.000E-02 
-9.500E-03 
-9.000E-03 
-8.5OOE-03 
-8.000E-03 
-7.500E-03 
-7.OOOE-03 
-6.5OOE-03 
-6.000E-03 
-5.5OOE-03 
-5.OOOE-03 
-4.5008-03 
-4.000E-03 
-3.5008-03 
-3.000E-03 
-2.5001-03 
-2.000E-03 
-1.5OOE-03 
-1.000E-03 
-5.OOOE-04 
1.863E-09 
2.5006-03 
3.000E-03 
3.5006-03 
4.000E-03 
4.5OOE-03 
5.000E-03 
5.5006-03 
6.000E-03 
6.500E-03 
7.000E-03 
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103 

105 
104 

106 
107 
108 
109 
110 
ill 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 

129 
128 

130 
131 
132 
133 

135 
134 

136 
137 
138 
139 

141 
140 

142 
143 
144 
145 
146 
147 
148 
149 
150 
151 

153 
152 

155 
154 

156 
157 

1800. 

1800. 
1800. 

1800. 
1800.  
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 

1800. 
1800. 

1800. 
1800. 
1800. 
1800. 

1800. 
1800. 

1800. 
1800. 
1800. 
1800. 

151499. 

171699. 
161599. 

181799. 
191899. 
201999. 
212099. 
222199. 232299. 
242399. 
252499. 

272699. 
262599. 

171699. 
161599. 
151499. 
141399. 
131299. 
121199. 

100999. 
111099, 

90899. 
80799. 
70699. 
60599. 
50499. 
40399. 
30299. 
20199. 
10099. 

-1. 
-10101. 
-20201. 
-30301. 
-40401. 
-50501. 
-60601. 

-80801. 
-70701. 

-90901. 
-101001. 
-111101. 
-121201. 
-131301. 
-141401. 
-151501. 
-161601. 
-171701. 
-181801. 
-191900. 
-202000. 
-212100. 
-222200. 
-232300. 
-242400. 

7.500E-03 
8.OOOE-03 
8.5001-03 
9.000E-03 
9.5OOE-03 
1.000E-02 
1.050E-02 
1.100E-02 
1.150E-02 
1.200E-02 
1.250E-02 
1.300E-02 

8.5003-03 
1.350E-02 

8.OOOE-03 
7.500E-03 
7.OOOE-03 
6.5OOE-03 
6.000E-03 

5.000E-03 
5.500E-03 

4.5001-03 
4.000E-03 
3.5OOE-03 
3.000E-03 
2.500E-03 
2.000E-03 
1.500E-03 
9.999E-04 
4.999E-04 
-6.519E-08 

-1.000E-03 
-5.001E-04 

-1.5OOE-03 
-2.000E-03 
-2.500E-03 
-3.000E-03 

-4.000E-03 
-3.500E-03 

-4.5001-03 
-5.000E-03 
-5.500E-03 
-6.000E-03 

-7.000E-03 
-6.500E-03 

-7.500E-03 
-8.000E-03 
-8.5OOE-03 
-9.000E-03 

-1.000E-02 
-9.5006-03 

-1.050E-02 
-1.100E-02 
-1.150E-02 
-1.200E-02 

158 
159 
160 
161 
162 
163 
164 

166 
165 

167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 

1800. 

1800. 
1800. 

1800. 
1800. 
1800. 
1800. 

1800. 
1800. 

1800. 
1800. 
1800. 
1800. 

1800. 
1800. 

1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 

-252500. 
-262600. 
-272700. 
-222200. 
-212100. 
-202000. 
-191900. 
-181800. 
-171700. 
-161600. 
-151500. 

-131300. 
-141400. 

-121200. 
-111100. 
-101000. 
-90900. 
-80800. 
-70700. 
-60600. 
-50500. 
-40400. 
-30300. 
-20200. 
-10100. 

0. 

-1.25OE-02 
-1.300E-02 
-1.350E-02 
-1.100E-02 
-1.050E-02 

-9.5003-03 
-1.000E-02 

-9.000E-03 
-8.5OOE-03 
-8.000E-03 
-7.5003-03 

-6.500E-03 
-7.000E-03 

-6.000E-03 
-5.500E-03 
-5.000E-03 
-4.5006-03 
-4.000E-03 
-3.5003-03 

-2.5001-03 
-3.000E-03 

-2.000E-03 
-1.500E-03 
-1.OOOE-03 
-5.00OE-04 
1.863E-09 
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Appendix B 
Sample  Program  Output 

INC 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

40 
39 

42 
41 

43 
44 
45 
46 
47 

IEnP 
F 

1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 

1800. 
1800. 

1800. 
1800. 

1800. 
1800. 

1800. 
1800. 

1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 

1800. 
1800. 

1800. 
1800. 
1800. 
1800. 

STRESS 
PSI 

29252. 
0. 

39872. 
41495. 
43143. 
44353. 
45334. 
46318. 
47302. 
48189. 
48700. 
49212. 
49696. 
50208. 
50720. 

51746. 
51233. 

52772. 
52259. 

53285. 
53798. 
54311. 
54824. 
55337. 
-32726. 
-33250. 
-33737. 
-34282. 
-34783. 
-35284. 
-35831 I 

-36846. 
-36339. 

-373Ei3. 
-37894. 
-38405. 
-38915. 
-39425. 
-39957. 
-40469. 
-40981. 
-41505. 
-42017. 
-42536. 
-43049. 
-43566. 
-44077. 

TOTAL STRAIN 

O.OOOE+OO 
0.250E-02 
0.300E-02 
0.350E-02 

0.4503-02 
0.400E-02 

0.550E-02 
0.500E-02 

0.600E-02 
0.650E-02 
0.700E-02 
0.7508-02 
0.800E-02 
0.85OE-02 
0.900E-02 
0.950E-02 
0.100E-01 
0.105E-01 
0.llOE-01 
0.115E-01 
0.12OE-01 
0.125E-01 
0.130E-01 
0.135E-01 
0.850E-02 
0.800E-02 
0.750E-02 
0.7008-02 
0.650E-02 
0.600E-02 
0.5506-02 
0.500E-02 
0.450E-02 
0.400E-02 
0.350E-02 
0.300E-02 
0.250E-02 
0.200E-02 
0.150E-02 
0.100E-02 
0.500E-03 
-0.6523-07 
-0.500E-03 
-0.100E-02 
-0.150E-02 
-0.200E-02 
-0.2808-02 

PLASTIC STRAIN 

O.OOOE+OO 
O.OOOE+OO 

0.102E-02 
0.144E-02 

O.ZZ9E-02 
0.186E-02 

0.32OE-02 
0.2756-02 

0.3653-02 
0.410E-02 

0.5056-02 
0.458E-02 

0.551E-02 
0.599E-02 
0.646E-02 
0.694E-02 
0.741E-02 
0.789E-02 

0.8838-02 
0.8366-02 

0.931E-02 
0.978E-02 
0.103E-01 
0.107E-01 
0.102E-01 
0.967E-02 
0.921E-02 
0.872E-02 
0.825E-02 
0.7783- 02 
0.729E-02 
0.682E-02 
0.635E-02 
O.588E-02 
O.539E-02 
0.492E-02 
0.444E-02 

0.349E-02 
0.3978-02 

0.301E-02 
0.2543-02 

0.1591-02 
0.2068-02 

0.lllE-02 
0.63rlE-03 
0.157E-03 
-0.316E-03 

48 
49 
50 
51 
52 

E4 
53 

55 
56 
57 
58 
59 

61 
60 

62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 

82 
81 

83 
M 
85 
86 
87 
88 
89 

91 
90 

92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 

1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 

1800. 
1800. 

1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 

1800. 
1800. 

1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 

-44587. 

-45603. 
-45099. 

-46116. 
-46628. 
-47140. 
-47653. 
-48144. 
-48656. 

-49679. 
-49167. 

-50191. 
-50702. 
-51214. 
-51726. 

-52749. 
-52237. 

-53261. 
-53772. 
-54284. 
-54’196. 
-55307. 
-4807. 
5293. 
15393. 
25493. 
32167. 

33279. 
32755. 

33766. 
34312. 
34812. 
35313. 
35861. 
36368. 
36875. 
37382. 
37924. 
38434. 
38944. 
39454. 
39986. 
40498. 

41534. 
41010. 

44107. 
44616. 
45128. 
45633. 
46145. 
46657. 
47170. 
47682. 
48173. 
48685. 

-0.300E-02 
-0.35OE-02 
-0.400E-02 
-0.450E-02 
-0.5OOE-02 
-0.550E-02 
-0.600E-02 
-0.650E-02 
-0.700E-02 
-0.75OE-02 
-0.800E-02 
-0.850E-02 
-0.900E-02 
-0.950E-02 
-0.100E-01 
-0.105E-01 
-0.110E-01 

-0.120E-01 
-0.115E-01 

-0.125E-01 
-0.130E-01 
-0.135E-01 
-0.110E-01 
-0.105E-01 
-0.100E-01 

-0.900E-02 
-0.9503-02 

-0.850E-02 
-0.800E-02 
-0.750E-02 
-0.700E-02 
-0.65OE-02 
-0.600E-02 
-0.550E-02 
-0.500E-02 
-0.4506-02 
-0.400E-02 
-0.350E-02 
-0.300E-02 
-0.250E-02 
-0.200E-02 
-0.15OE-02 
-0.100E-02 
-0.500E-03 
0.186E-08 
0.25OE-02 
0.300E-02 
0.35OE-02 
0.400E-02 
0.450E-02 
0.500E-02 
0.5503-02 
0.600E-02 
0.650E-02 
0.700E-02 

-0.789E-03 
-0.126E-02 
-0.173E-02 
-0.221E-02 
-0.268E-02 
-0.316E-02 
-0.363E-02 
-0.410E-02 
-0.457E-02 
-0.505E-02 
-0.552E-02 
-0.5991-02 
-0.647E-02 
-0.6948-02 
-0.74ZE-02 
-0.7898-02 
-0.836E-02 
-0.884E-02 
-0.931E-02 
-0.979E-02 
-0.103E-01 
-0.107E-01 
-0.107E-01 
-0.107E-01 
-0.107E-01 
-0.107E-01 
-0.107E-01 
-0.102E-01 
-0.968E-02 

-0.872E-02 
-0.921E-02 

-0.825E-02 
-0.7793-02 
-0.7308-02 
-0.682E-02 
-0.635E-02 
-0.588E-02 
-0.539E-02 
-0.492E-02 
-0.445E-02 
-0.397E-02 
-0.3496-02 
-0.302E-02 
-0.254E-02 
-0.206E-02 
0.315E-03 
0.788E-03 
0.126E-02 
0.1733-02 
0.2218-02 
0.268E-02 
0.316E-02 
0.3631-02 

0.457E-02 
0.410E-02 
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e 

103 
104 
105 
106 
107 

109 
108 

110 
111 

113 
112 

114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 

131 
130 

132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 

145 
144 

146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 

1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 

1800. 
1800. 

1800. 
1800. 

1800. 
1800. 

1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 

1800. 
1800. 

1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 
1800. 

49196. 

50220. 
49708. 

50731. 
51243. 
51755. 
52266. 
52778. 
53290. 
53801. 
54313. 
54825. 

-32138. 
55336. 

-33250. 
-33737. 
-34282. 
-34783. 
-35284. 

-36339. 
-35831. 

-36846. 
-37353. 
-37894. 
-38405. 
-38915. 
-39425. 
-39957. 
-40469. 
-40981. 
-41505. 
-42017. 
-42536. 
-43049. 
-43566. 

-44587. 
-45099. 
-45603. 
-46116. 
-46628. 
-47140. 
-47653. 
-48144. 
-48656. 

-49679. 
-49167. 

-50191. 
-50702. 
-51214. 
-51726. 
-52237. 
-52749. 
-53261. 
-53772. 

-44077. 

0.75OE-02 

0.850E-02 
0.800E-02 

0.900E-02 
0.9506-02 
0.100E-01 
O.lO5E-01 
0 .llOE-01 
0.115E-01 
0.120E-01 
0.125E-01 
0.130E-01 
0.135E-01 
0.850E-02 
0.800E-02 
O.75OE-02 
0.700E-02 
0.65OE-02 
0.600E-02 
0.550E-02 
O.5OOE-02 
0.45OE-02 
0.400E-02 
0.35OE-02 
0.300E-02 
0.250E-02 
0.200E-02 
0.150E-02 
0.100E-02 
0.500E-03 
-0.652E-07 
-0.500E-03 
-0.100E-02 
-0.150E-02 
-0.200E-02 
-0.2508-02 
-0.300E-02 
-0.3506-02 
-0.400E-02 
-0.45OE-02 
-0.5OOE-02 

-0.600E-02 
-0.550E-02 

-0.6506-02 
-0.700E-02 

-0.800E-02 
-0.75OE-02 

-0.850E-02 
-0.900E-02 
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